Amination of Bis(trimethylsilyl)-1,2-bisketene to Ketenyl Amides, Succinamides, and Polyamides: Preparative and Kinetic Studies

Annette D. Allen, Patrick A. Moore, Sharif Missiha, and Thomas T. Tidwell*

Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6

Received December 28, 1998

The reaction of the bisketene (Me₃SiC=C=O)₂ (1) with amines is facile and proceeds by two distinct steps forming first ketenylcarboxamides **3** and then succinamides **5**. Successive reaction of **1** with two different amines gives mixed succinamides, while phenylhydrazine gives succinimide 7. The reactions of 1.8 equiv of 1 with $1,4-(H_2NCH_2)_2C_6H_4$ gives α,ω -bisketenyldiamide 13, while equivalent amounts of 1 and diamines gave polymeric amides. Mixed ester amides 8 are formed by sequential reaction of 1 with an alcohol, followed by an amine, or vice versa. Kinetic studies of the amination reaction of 1 with excess amines in CH_3CN gave rate constants k_{obs} for the formation of ketenylcarboxamides that were fit by the relationship $k_{obs} = k_a[amine]^2 + k_b[amine]^3$. Further reaction of the *n*-butyl ketenylcarboxamide **3b** with *n*-BuNH₂ to give the succinamide **5b** was first order in [*n*-BuNH₂], while the further reaction of the CF_3CH_2 ketenylcarboxyamide **3c** with $CF_3CH_2NH_2$ to form **5c** was fit by the equation $k_{obs} = k_c[amine]^2/(k_d[amine] + 1)$. The reaction of **3b** with CH₃OH to form the ester amide **8a** is strongly accelerated compared to CH₃OH addition to the corresponding ketenyl ester and gives significant stereoselectivity for formation of erythro product, and both these effects, as well as the absence of higher order kinetic terms in the reaction of **3b** with *n*-BuNH₂, may arise from coordination by the carboxamido group to the nucleophile.

The reactions of 1,2-bisketenes¹ with oxygen nucleophiles (H₂O^{1a,b,f} and alcohols^{1a,c,g}), electrophiles,^{1b,d} diazoalkanes,^{1e} alkenes,^{1e} and alkynes^{1e} have been studied in our laboratory and give a diverse chemistry. The reaction with amines is a prototypical reaction of ketenes² and has recently been the subject of theoretical^{2b,c} and mechanistic study.^{2d-j} In agreement with our criticism^{3a} of earlier interpretations^{3b,c} these theoretical studies^{2b,c} for the reaction of $CH_2=C=O$ with NH_3 support a mechanism involving initial attack at the C=O bond with formation of an intermediate amide enol which then isomerizes to the product amide (eq 1). A pathway for addition to the C=O bond involving two molecules of amine (eq 1) was favored over pathways involving direct addition to the C=C bond.^{3b,c}

Tidwell, T. T. J. Am. Chem. Soc. 1998, 120, 3043-3048. (c) Raspeet, G.; Nguyen, M. T.; Kelly, S.; Hegarty, A. F. J. Org. Chem. 1998, 63, 9669-9677. (d) Andraos, J.; Kresge, A. J. J. Am. Chem. Soc. 1992, 114, 5643-5646. (e) Wagner, B. D.; Arnold, B. R.; Brown, G. W.; Lusztyk, J. J. Am. Chem. Soc. 1998, 120, 1827-1834. (f) Frey, J.; Rappoport, Z. J. Am. Chem. Soc. 1996, 118, 3994-3995. (g) Barton, D. H. R.; Chung, S. K.; Kwon, T. W. Tetrahedron Lett 1996, 37, 3631-3634. (h) Birney, D. M.; Xu, X.; Ham, S.; Huang, X. J. Org. Chem. 1997, 62, 7114-7120. (i) Liu, R. Y.-c; Lusztyk, J.; McAllister, M. A.; Tidwell, T. T. J. Org. Chem. 1996, 42, 2647-6251. (j) Allen, A. D.; Tidwell, T. T. J. Org. Chem. 1996, 42, 2687-2613. (b) Lillford, P. J.; Satchell, D. P. N. J. Chem. Soc. B 1970, 1016-1019.

$$CH_{2}=C=O \xrightarrow{2NH_{3}} \left[CH_{2}=C \xrightarrow{O--H}_{NH_{2}} H_{2}N-H^{\dagger} \xrightarrow{-NH_{3}} CH_{2}=C \xrightarrow{OH}_{NH_{2}} H_{2}N-H^{\dagger} \xrightarrow{CH_{3}CONH_{2}} (1)\right]$$

Experimental studies^{2j} of the amination of PhMe₂-SiCH=C=O and t-BuC(i-Pr)=C=O in CH₃CN showed higher than first-order dependences of the observed rate constants on the [amine], whereas more reactive ketenes in CH₃CN^{2e,i} or H₂O^{2d} showed only a first-order dependence of k_{obs} on [amine]. This difference was interpreted^{2j} to result from irreversibility of reaction of the reactive ketenes with a single amine molecule, whereas for less reactive ketenes the initial reaction was reversible and later steps involving further amine molecules as in eq 1 are kinetically significant.

The reaction of 1,2-bisketenes with amines has not been previously studied but is an attractive subject because such reactions provide potential routes to a variety of useful products. In particular, reactions with diamines offer the potential of a novel route for the formation of polyamides, including cyclic derivatives. We now report an examination of some of these processes.

Results and Discussion

The stable bis(trimethylsilyl)-1,2-bisketene 1,^{1a} formed from the corresponding cyclobutenedione 2, exists preferentially in a twisted conformation.⁴ The products from reaction of 1 with amines are summarized in Scheme 1.

^{(1) (}a) Zhao, D.-c.; Allen, A. D.; Tidwell, T. T. J. Am. Chem. Soc. 1993, 115, 10097–10103. (b) Allen, A. D.; Ma, J.; McAllister, M. A.; Tidwell, T. T.; Zhao, D.-c. *J. Chem. Soc., Perkin Trans.* 2 **1995**, 847–851. (c) Egle, I.; Lai, W.-Y.; Moore, P. A.; Renton, P.; Tidwell, T. T.; Zhao, D.-c. *J. Org. Chem.* **1997**, *61*, 118–25. (d) Brown, R. S.; Christl, M.; Lough, A. J.; Ma, J.; Peters, E.-M.; Peters, K.; Sammtleben, F.; Sung, K.; Slebocka-Tilk, H.; Tidwell, T. T. *J. Org. Chem.* **1998**, *63*, 6000–6006. (e) Colomvakos, J. D.; Egle, I.; Ma, J.; Pole, D. L.; Tidwell, T. Warkentin, J. *J. Org. Chem.* **1996**, *61*, 9522–9527. (f) Liu, R.; Marra, R.; Tidwell, T. T. J. Org. Chem. 1936, 61, 6227-6232. (g) Dejmek, M.
 M.; Selke, R. Angew. Chem. Int. Ed. Engl. 1998, 37, 1540-1542.
 (2) (a) Tidwell, T. T. Ketenes; Wiley: New York, 1995. (b) Sung, K.;
 Tidwell, T. T. J. Am. Chem. Soc. 1998, 120, 3043-3048. (c) Raspoet,

^{(4) (}a) Allen, A. D.; Ma, J.; McAllister, M. A.; Tidwell, T. T.; Zhao, D.-c.; *Acc. Chem. Res.* **1995**, *28*, 265–271. (b) Allen, A. D.; Tidwell, T. T. T. Chem. Commun. 1996, 2171-2172.

 Table 1. Identifying Analytical Features of Ketenyl Amides

	IR (cı	IR (cm ⁻¹)		¹³ C NMR δ (C _{β} =C _{α} =O)	
ketenes	C=C=O	CONH	\mathbf{C}_{eta}	C_{α}	
3a	2081	1653	2.0	179.6	
3b	2077	1653	10.7	179.8	
13	2085	1649	10.7	179.6	

Reactions of **1** with 1 equiv of PhCH₂NH₂ or *n*-BuNH₂ in CH₂Cl₂ proceed efficiently to give ketenyl amides **3a**,**b**, respectively, as the only observable products, as established by their spectral properties, especially the distinctive IR and ¹³C NMR absorptions of the C=C=O group (Table 1).

After 8 days at 0 °C in CH_2Cl_2 **3a** reacted completely as shown by ¹H NMR and IR to give a product tentatively identified as a mixture of the succinimide **4a** and desilylated products, and for characterization this mixture was converted by *n*-Bu₄NF in THF to benzyl succinimide **4b**.^{5a} The reaction of **1** with 1 equiv of $CF_3CH_2NH_2$ proceeded slowly and after 3 h on the basis of the ¹H NMR spectrum gave 40% unreacted **1**, 35% of ketenylamide **3c**, and 25% of a product analogous to **4a**.

Reaction of **1** with 2 equiv of PhCH₂NH₂ or *n*-BuNH₂, or 6 equiv of CF₃CH₂NH₂, in CH₂Cl₂ at room temperature gave complete conversion to almost equal amounts of the diastereomeric *meso-* and *dl*-succinamides **5**, evidently through the ketenyl amides **3**. Chromatography of **5a** caused significant amounts of desilylation, but the *meso* and *d*,*l* isomers were separated in a total yield of 30%.

Partial separation of *meso-* and *d,I-***5c** was effected by recrystallization. Analogously to our examination^{1c} of the formation of succinates from the reaction of **1** with alcohols, the identity of the separated diastereomers of **5a** were ascertained from the chemical shifts and from the vicinal coupling constants of the protons on C₂ and C₃ obtained from the natural abundance ¹³C satellites in the ¹H NMR,^{5b} with the *meso* and *d,I* diastereomers in the favored conformations shown. Comparable results had been obtained for the corresponding succinate esters,^{1c} for which the structural and conformational assignments were confirmed by X-ray crystallography.^{1c}

Reaction of **1** in CH_2Cl_2 with 1 equiv of $PhCH_2NH_2$ followed by addition of 1 equiv of *n*-BuNH₂ and evaporation of the solvent gave the mixed diamides **6** in 95% crude yield and 94% purity by ¹H NMR analysis, as a 2/1 mixture of the *erythro* and *threo* diastereomers. These were separated by chromatography and identified by their characteristic ¹H coupling constants.^{5b}

Reaction of **1** with phenylhydrazine in CH_2Cl_2 gave complete conversion to succinimide **7** with a 90% preference for one stereoisomer, which was separated in 95% purity by chromatography. The structures of the analogous *cis*- and *trans*-succinic anhydrides were established by X-ray crystallography,^{1a} but even with this comparison the stereochemistry of **7** is not certain.^{5b}

^{(5) (}a) Puertas, S.; Rebolledo, F.; Gotor, V. *Tetrahedron* **1995**, *51*, 1495–1502. (b) See the Experimental Section and the summary in Table 3 (Supporting Information).

The reaction of **3b** with CH₃OH gave a > 9/1 preference for formation of the *erythro* mixed ester amide **8a** with a conformation analogous to that shown for *meso*-**5** on the basis of the large vicinal H,H coupling constant of 11.5 Hz. The product-forming step in ketene esterification involves protonation at C_{β} of an intermediate ester enol, and a model (**9**) is shown for the observed selectivity with assistance by the amide oxygen in proton transfer by CH₃OH. This structure minimizes the interaction between the bulky Me₃Si groups in the transition state.

Exposure of 1 to neat MeOH followed by rapid removal of the excess MeOH gave complete conversion to the ketenyl ester **10a**, as reported previously.^{1a} Reaction of 10a with 1 equiv of PhCH₂NH₂ in CH₂Cl₂ led to the succinyl ester amide **8b** as a mixture assigned as the erythro and threo diastereomers^{5b} together with the desilylated product 11a in a ratio of 63:27:10, respectively. The regioselectivity for formation of 11a arises from a greater lability of groups α to the ester as opposed to amide groupings and was confirmed by the coupled ¹³C NMR spectrum which showed that the carbon adjacent to the ester bears 2 protons. In other similar experiments, much less of the desilylated product 11a was observed in the initial product, which contained erythro- and threo-8b in a 2:1 ratio. Upon chromatographic separation, extensive desilvlation occurred, and the maximum yields of purified erythro- and threo-8b and 11a, were 20, 25, and 15%, respectively.

Reaction of **1** with 0.95 equiv of benzyl alcohol catalyzed by Et_3N led to the ketenyl ester **10b**, which was identified by the ¹H NMR spectrum of the reaction mixture. The use of Et_3N to catalyze alcohol addition to **1** has not been reported previously and greatly accelerates the process. Addition of PhCH₂NH₂ to **10b** gave the *erythro* and *threo* ester amides **8c**, along with the desilylated product **11b** in a ratio of 62:22:16, respectively as determined by ¹H NMR. Upon chromatography, *erythro*-**8c** and **11b** were isolated in pure form and fully characterized.

We have also recently utilized the methodology of reacting bisketene **1** with methyl poly(ethylene glycol) (MPEGOH) to form a soluble polymer-supported ketenyl ester analogous to **10** ($\mathbb{R}^2 = \text{MPEGO}$) which reacted with amines to form polymer-supported ester amides analogous to **8**.⁶ These were desilylated and cleaved from the polymer support to give either succinimides or ester amides.⁶

Reaction of 1,4-di(aminomethyl)benzene (12) with 1 in a 1/1.8 molar ratio in CH_2Cl_2 at room temperature for 10 min followed by evaporation of the solvent gave a white solid product that by ¹H NMR was identified as the bisketene 13 (eq 2) containing 8% of succinamide products, with the latter identified by the characteristic ¹H NMR signals at δ 2.03 and 2.33 typical of succinamides. The bisketene **13** was too sensitive for purification but was identified by its spectral characteristics (Table 1).

Reaction of **1** with 1.2 equiv of **12** at -78 °C in CH₂Cl₂ followed by warming to 25 °C and evaporation of the solvent gave a white solid which by ¹H NMR in CD₃OD has the structure **14** (eq 3), with a 4/1 preference for the *erythro* configuration of the vicinal succinic α -protons (δ 2.15) over the *meso* configuration (δ 2.45). Integration showed the benzylamino (s, δ 3.8, CH₂NH₂) and benzylamido (m, δ 4.2, CH₂NHCO) protons in a 1/8 ratio consistent with a value for *n* of 8 (eq 3).

Reaction of **1** with an equimolar amount of 1,6-hexanediamine led to a product with spectra attributable to the oligomeric amide **15** (eq 4). The IR spectrum showed the absence of ketenyl absorption near 2100 cm⁻¹ and the presence of amide absorption at 1650 and 1499 cm⁻¹, and the ¹H NMR spectrum showed signals at δ 3.15 due to the CH₂ group adjacent to amido nitrogen CONHCH₂ and δ 5.9 for the CH₂ group next to amino nitrogen H₂NCH₂ in a 4/1 ratio, as well as the other signals expected for **15** with n = 4.

$$1 + H_2N(CH_2)_6NH_2 \longrightarrow 0 \\ H_2N\left[(CH_2)_6NH + CONH\right]_n (CH_2)_6NH_2$$
(4)
$$15$$

Kinetic Investigations

The kinetics of the reaction of **1** with excess *n*-BuNH₂ (0.188 × 10^{-2} to 4.02×10^{-2} M) and with CF₃CH₂NH₂ (0.0213 to 0.256 M) in CH₃CN to form ketenyl amides **3b** and **3c** (Scheme 1), respectively, were measured by observing the decrease in absorption near 386 nm using stopped-flow or conventional UV spectroscopy, and the derived first-order rate constants are reported in Table 4 (Supporting Information). With [*n*-BuNH₂] from 0.02 to 0.25 M and [CF₃CH₂NH₂] from 0.341 to 2.10 M and longer time scales, the pseudo-first-order rate constants for reaction of the intermediate ketenyl amides **3b** and **3c** to form the bisamides **5b** and **5c** were measured at 331 nm, as reported in Table 5 (Supporting Information).

Ketenyl amide **3b** was also generated in a preparative reaction (Scheme 1), and its UV spectrum showed the same λ_{max} at 332 nm observed in the kinetic experiments.

Table 2. Summary of Rate Constants at 25 °C for Reactions of Bisketene 1 and Ketenyl Amides 3 with Nucleophiles in
CH3CN and Comparison to PhMe2SiCH=C=O (16)

ketene	nucleophile	$k_{\rm a}~({ m M}^{-2}~{ m s}^{-1})$	$k_{\rm b}~({ m M}^{-3}~{ m s}^{-1})$	$k_{\rm a}(1)/k_{\rm a}(16)$	$k_{\rm b}({\bf 1})/k_{\rm b}({\bf 16})$
1	<i>n</i> -BuNH ₂	$(1.73 \pm 0.10) imes 10^{6}$	(2.39 \pm 0.58) $ imes$ 10 ⁷	7.6	6.3
	CF ₃ CH ₂ NH ₂	(5.37 ± 0.18)	(2.03 ± 0.89)	18	9.2
			$k_{\rm obs}(1)/k_{\rm obs}(3)$	$k_{\rm obs}(16)/k_{\rm obs}(3)$	
3b	<i>n</i> -BuNH ₂	$k_{\rm obs} = (2.11 \pm 0.03) \ { m M}^{-1} \ { m s}^{-1}$	$(2.4{-}3.7) imes10^{4}{}^{a}$	$1.4 imes10^{4}$ b	
	CH ₃ OH	$k_{ m obs} = 1.56 imes 10^{-2} \ { m s}^{-1}$	0.59^{c}		
3c	CF ₃ CH ₂ NH ₂	$k_{ m c}$ = (6.66 \pm 0.39) $ imes$ 10 ⁻⁴ M ⁻² s ⁻¹	$9.3 imes10^{3d}$	$5.4 imes10^{2}$ d	
		$k_{\rm d} = 0.148 \pm 0.044 \ {\rm M}^{-1}$			

 a 2.4 × 10⁴ and 3.8 × 10⁴ at [*n*-BuNH₂] = 0.040 and 0.020 M, respectively. b [*n*-BuNH₂] = 0.050 M. c In neat CH₃OH. d [CF₃CH₂NH₂] = 0.256 M.

Figure 1. Fit of k_{obs} versus [CF₃CH₂NH₂] for monoamination of (Me₃SiC=C=O)₂ (1) by eq 5.

Reaction of **3b** from the preparative reaction with 0.0200 M *n*-BuNH₂ to form **5b** gave $k_{obs} = 2.66 \times 10^{-2} \text{ s}^{-1}$, in satisfactory agreement with the value $2.34 \times 10^{-2} \text{ s}^{-1}$ obtained in the kinetic experiments beginning with **1**.

The dependence of the measured rate constants for the amination of bisketene **1** to form **3b** and **3c** are fit by eq 5, as summarized in Table 2 and illustrated in Figure 1 for reaction with $CF_3CH_2NH_2$. Previously^{2j} we found that rate data for the monoketene PhMe₂SiCH=C=O (**16**) with amines were also fit by eq 5, and this rate expression was derived from the reaction scheme in eqs 6 and 7, which involves a complex of the ketene with two amine molecules.

$$k_{\rm obs} = k_{\rm a} [\rm amine]^2 + k_{\rm b} [\rm amine]^3$$
 (5)

ketene + 2 amine
$$\stackrel{k_1}{\underset{k_{-1}}{\longrightarrow}}$$
 complex $\stackrel{k_2}{\longrightarrow}$ product (6)

complex + amine
$$\xrightarrow{\kappa_3}$$
 product (7)

The sizable rate constant ratios k(1)/k(16) in Table 2 show that just as in hydration and esterification bisketene **1** is more reactive than less hindered monoketenes. For **1** the very large rate constant ratios $k_{n-\text{BuNH}_2}/k_{\text{CF}_3\text{CH}_2\text{NH}_2}$ (Table 2) are comparable to those found for PhMe₂SiCH=C=O (**16**),^{2j} confirming the strong dependence of ketene reactivity on amine basicity. The further reaction of the ketenyl amide **3b** to form the bisamide **5b** gave a linear correlation of k_{obs} with [n-BuNH₂] (Figure 2), while the reaction of **3c** with CF₃CH₂NH₂ to form **5c** was fit by eq 8 (Figure 3, Supporting Information), with a second-order but no third-order term in [amine] (Table 2). Previously^{2j} this latter behavior was found for reaction of the monoketene t-BuC(Pr-i)=C=O with n-BuNH₂, and the rate expression of eq 8 was derived from the reaction scheme in eq 9, with $k_c = k_2k_1/k_{-1}$ and $k_d = k_2/k_{-1}$.

$$k_{\rm obs} = k_{\rm c}[\text{amine}]^2 / (k_{\rm d}[\text{amine}] + 1)$$
(8)

ketene + amine
$$\stackrel{k_1}{\underset{k_{-1}}{\longrightarrow}}$$
 complex $\stackrel{k_2}{\underset{amine}{\longrightarrow}}$ product (9)

In the reaction of **3b** with *n*-BuNH₂ the initial step is evidently irreversible. This behavior has been found for reactive ketenes^{2d,e} but is unusual for **3b** which is rather unreactive and is less reactive than PhMe₂SiCH=C=O by a factor of 1.4×10^4 (Table 2).

Previously^{2j} we suggested that for more reactive ketenes the instability of the reactant meant that further reaction of the initial ketene–amine adduct was faster than reformation of the reactant, and so the initial step was irreversible. However, as noted, **3b** is quite unreactive compared to **1**. As shown in eq 1, the function of the second amine molecule is to provide assistance in formation of an amide enol intermediate, and for **3b** the amide present in the molecule may assume this role, as depicted in **17**. A significant rate enhancement for the addition of CH₃OH to **3b** is also suggested to involve assistance by the carboxamido group (vide infra).

In the addition of $CF_3CH_2NH_2$ to **3c**, the poorly nucleophilic amine has a strong tendency to leave and reversibly reform the starting material, and a second amine molecule is needed to stabilize a transition structure analogous to that shown in eq 1. Just as in the reaction of *t*-BuC(Pr-*i*)=C=O with *n*-BuNH₂, which also is fit by eq 8,^{2j} the reaction of **3c** with a second amine is a slow process with a crowded substrate and so leads irreversibly to product.

Because of the different rate expressions for the first and second reactions of **1** with amines, the rate ratio of bisketene **1** relative to ketenyl amide **3** depends on [amine] and varies from $(9.3-37) \times 10^3$ (Table 2). These large ratios for amines of widely different reactivity show

Figure 2. Plot of k_{obs} versus [*n*-BuNH₂] for amination of carboxamide ketene **3b**.

why preparative selective monoamination is feasible. The rate constant ratios k(1)/k(16) of 6.3–18 illustrate that even though the bisketene 1 is more crowded than PhMe₂-SiCH=C=O, the former is significantly more reactive. Previously we have pointed out that 1,2-bisketenes, in which the adjacent β -carbons of the ketenyl groups both bear substantial negative charge, suffer from groundstate destabilization due to repulsive interactions between the two ketenyl groups.^{4a} This effect, rather than any stabilization of a conjugated intermediate from reaction of a bisketene, was assigned as the cause of the relatively high reactivity of bisketenes. For comparison, the rate of hydration of **1** is similar to that of **16**,^{1f} and hydration of 1 produces an intermediate ketenyl carboxylic acid, which cyclizes to a succinic anhydride with a rate constant 2.2 times less than the initial hydration.^{1b}

The amination rate constants of the monoketene PhMe₂SiCH=C=O (**16**)^{2j} are greater than the corresponding values for the ketenyl amides **3** by factors 5.4 \times 10² and 1.4 \times 10⁴ (Table 2), reflecting the steric crowding in **3**. The rate ratio k(n-BuNH₂)/ $k(H_2O)$ for the bisketene **1** is concentration dependent, and at the lowest [H₂O] studied,^{1a} 11.1 M, the value of $k_2 = k_{obs}[H_2O]^{-1}$ is 2.7 \times 10⁻⁴ M⁻¹ s⁻¹, and this value is 2.9 \times 10⁶ less than k_2 for reaction with *n*-BuNH₂ found here. This is somewhat larger than the ratio k(n-BuNH₂)/ $k(H_2O) = 7.1 \times$ 10⁴ estimated^{2j} for Ph₂C=C=O in H₂O.

The rate constant for reaction of the amide-substituted ketene **3b** in neat CH₃OH forming ester amide **8a** was determined as $1.56 \times 10^{-2} \text{ s}^{-1}$ at 25 °C (Table 2), and this is the first measurement of the rate constant for such a reaction. Surprisingly this rate constant exceeds that of $9.21 \times 10^{-3} \, \bar{s^{-1}}$ found^1a for the reaction of bisketene 1with CH₃OH, and the rate ratio $k(\mathbf{1})/k(\mathbf{3b})$ with CH₃OH is 0.59, much less than the ratio $k(\mathbf{1})/k(\mathbf{3b})$ with *n*-BuNH₂ of (2.4 to 3.7) \times 10⁴ (Table 2). The further reaction with CH₃OH of the ester-substituted ketene **10a** from **1** was also clearly slower than the first reaction of 1 by a significant factor, estimated to be at least 10.1a This suggests a significant accelerating effect of CH₃OH addition by hydrogen-bonding assistance provided by the amido group as shown in 18. A similar assistance by the carboxamido group in stabilizing the n-BuNH2 adduct of **3b** is represented by **17** (vide supra). As discussed above, there is also a significant selectivity for forming erythro-8a and model 9 involving carboxamide assistance of proton transfer to C_{β} in an intermediate ester enol was suggested to explain the stereoselectivity of the process.

For the monoketene PhMe₂SiCH=C=O (**16**), the ratio k(n-BuNH₂)/k(H₂O) is estimated^{2j} at a [nucleophile] of 11.1 M to be as high as 10¹³, and this is significantly greater than for **1**, which was estimated as 2.9×10^6 (vide supra). In another comparison,²ⁱ the measured rate ratio k(Et₂NH)/k(H₂O) in CH₃CN is 73 for the highly reactive oxoketene **19**, and both reactions are first order in [nucleophile]. Although these substrates react by different mechanisms with different rate laws, it is nevertheless apparent that there are enormous differents in the selectivities of different ketenes for different nucleophiles.

In summary, amination reactions of 1,2-bisketene **1** are facile and proceed in discrete steps to give ketenyl amides and then succinamides. Mixed succinamides and ester amides may also be prepared, and the reactions of diamides lead to new bisketenes and to polyamides. The rate constants for reaction of **1** with amines depend on both [amine]² and [amine]³, but the rate laws for the further reaction of the resulting ketenyl amides **3** depend on the particular amine. The reaction of ketenyl amide **3b** with MeOH shows a selectivity for *erythro* product stereochemistry and a large rate acceleration consistent with specific interactions of the carboxamido group with MeOH as shown in **9** and **18**, respectively. The rate law for reaction of **3b** with *n*-BuNH₂ also suggests carboxamido assistance as shown by **17**.

Experimental Section

Infrared (IR) spectra were recorded on a Perkin-Elmer FTIR 1000 spectrometer. ¹H NMR spectra were recorded on Varian VXR-200 or Varian Unity-400 instruments referenced to residual CHCl₃ (7.26 ppm). ¹³C NMR spectra are referenced to the center line of CDCl₃ (77.00 ppm). Reactions were carried out in flame- or oven-dried glassware under an atmosphere of N₂ or Ar.

N-Benzyl-2,3-bis(trimethylsilyl)-4-oxobut-3-enamide (3a). Bisketene 1 (200 mg, 0.886 mmol) in 3 mL of CH₂Cl₂ was added in one portion to a stirred solution of PhCH₂NH₂ (96 μL, 71 mg, 0.98 mmol) in 3 mL of CH₂Cl₂ at room temperature. After 5 min the solution was stored at -70 °C, a 0.5 mL aliquot was removed, and the solvent was evaporated at room temperature. Analysis by ¹H NMR showed the monoketene as the only identifiable product, in 95% purity by ¹H NMR analysis: ¹H NMR (CDCl₃) δ 0.132 (s, 9, Me₃Si), 0.155 (s, 9, Me₃Si), 1.92 (s, 1, CHCO), 4.42 and 4.44 (ea s, PhCH₂), 6.09 (m, 1, NH), 7.29 (m, 5, Ph);¹³C NMR (CDCl₃) δ -1.9, -1.0, 2.0, 10.8, 44.0, 127.3, 127.8, 128.5, 138.3, 173.1, 179.6; IR (CDCl₃) 3343 (w) NH, 2081 (C=C=O), 1653 (CON) cm⁻¹; EIMS m/z 333 (M⁺, 34), 242 (M⁺ - PhCH₂, 61), 91 (C₇H₇⁺, 70), 73 (Me₃Si⁺, 100); HRMS m/z calcd for C₁₇H₂₇NO₂Si₂ 333.1580, found 333.1577.

Cyclization of 3a. A solution of **3a** (0.50 mmol) prepared as above in 4.5 mL of CH_2Cl_2 was left at 0 °C for 8 day, and upon evaporation of the solvent no remaining **3a** was visible in the IR or ¹H NMR spectra, but ¹H NMR multiplets in the region δ 2.3–3.3 were suggestive of the presence of succinimide **4a** and desilylation products. The product mixture was stirred with *n*-Bu₄NF (1.5 mL, 1.0 M in THF) in 3 mL of THF for 10 min and then diluted with 10 mL of H₂O and extracted with 5 mL of ether. The organic extract was dried and evaporated to give **4b**⁵ as the major product by ¹H NMR, and this was purified by chromatography (2% MeOH in CH₂Cl₂) and identified by ¹H NMR (CDCl₃) peaks at δ 2.71 (s, 4, CH₂CH₂), 4.66 (s, 2, CH₂), and 7.3–7.4 (m, 5, Ph).

N-*n*-Butyl-2,3-bis(trimethylsilyl)-4-oxobut-3-enamide (**3b**). To bisketene **1** (265 mg, 1.17 mmol) in 4 mL of CH₂Cl₂ stirred at 25 °C was added *n*-BuNH₂ (114 μ L, 84.4 mg, 1.15 mmol) in 3 mL of CH₂Cl₂. After the exothermic reaction, the solution was stirred 5 min and then cooled to -70 °C for storage. A 1 mL aliquot was evaporated to give **3b** as a white solid, mp 73–77 °C: ¹H NMR (CDCl₃) δ 0.148 (s, 9, Me₃Si), 0.155 (s, 9, Me₃Si), 0.91 (t, 3, J = 7.3 Hz, CH₃), 1.3–1.6 (m, 4, CH₂CH₂), 1.85 (s, 1, CH), 3.2–3.3 (m, 2, NCH₂); ¹³C NMR (CDCl₃) δ –2.09, –1.06, 10.7, 13.6, 20.1, 31.9, 32.1, 39.5, 173.1, 179.8; IR (CH₂Cl₂) 3443, 2077, 1653, 1509 cm⁻¹; UV λ_{max} ^{CH₃CN 332 nm, ϵ = 40; EIMS *m*/*z* 299 (M⁺, 21), 198 (M⁺ – CONH₂-Bu-*n*, 100), 73 (Me₃Si⁺, 67); HRMS *m*/*z* calcd for C₁₄H₂₉NO₂-Si₂ 299.1737, found 299.1738.}

N,N-Dibenzyl-2,3-bis(trimethylsilyl)succinamide (meso- and d,l-5a). Bisketene 1 (206 mg, 0.912 mmol) in 3 mL of CH₂Cl₂ was added in one portion to a stirred solution of benzylamine (198 μ L, 1.81 mmol) in 3 mL of CH₂Cl₂ at room temperature, with transient generation of a pink color. After 2 min of stirring, the solvent was evaporated, giving crude 5a (0.37 mg, 0.84 mmol, 92%) which by ¹H NMR analysis consisted of *meso-* and *d*,*l*-**5a** in a 1.0/1.0 ratio, with about 4% of an impurity tentatively identified as a desilylated product. Radial chromatography on silica gel (2% Et₃N in CH₂Cl₂) separated the diastereomeric products: meso-5a (89 mg, 0.20 mmol, 22%) mp 149-152 °C; ¹H NMR (CDCl₃) δ 0.06 (s, 18, Me₃Si), 2.39 (s, 2, $J_{C,H} = 125$ Hz, $J_{H,H} = 11.1$ Hz, CHSiMe₃), 4.31 (d, 4, CH₂Ph), 5.89 (t, 2, NH), 7.3 (m, 10, Ph); ¹³C NMR $(CDCl_3)$ δ -1.2, 37.2, 44.0, 127.4, 128.3, 128.5, 138.0, 173.6; IR (CDCl₃) 3446, 1649, 1499 cm⁻¹; EIMS *m*/*z* 440 (M⁺, 14), 349 (M⁺ – Bn, 26), 91 (PhCH₂⁺, 100), 73 (Me₃Si⁺, 54); HRMS m/z calcd for C24H36N2O2Si2 440.2315, found 440.2309. d,l-5a (32 mg, 0.073 mmol, 8%) mp 146-148 °C;¹H NMR (CDCl₃) 0.07 (s, 18, Me₃Si), 2.05 (s, 2, $J_{C,H} = 119$ Hz, $J_{H,H} = 5.1$ Hz), 4.35 (m, 4, CH₂Ph), 7.3 (m, 10, Ph), 7.82 (bs, 2, NH); ¹³C NMR (CDCl₃) δ -1.3, 38.4, 44.0, 127.2, 128.1, 128.5, 138.4, 174.3; IR (CDCl₃) 3447, 1649, 1503 cm⁻¹; EIMS *m*/*z* 440 (M⁺, 10), 349 (M⁺ - PhCH₂, 21), 91 (C₇H₇⁺, 100), 73 (Me₃Si⁺, 40); HRMS m/z calcd for C24H36N2O2Si2 440.2315, found 440.2319.

N,N-Di-*n*-butyl-2,3-bis(trimethylsilyl)succinamide (*meso*- and *d,I*-5b). Bisketene 1 (182 mg, 0.804 mmol) in 3 mL of CH₂Cl₂ was added in one portion to *n*-BuNH₂ (158 μ L, 1.60 mmol) as in the preparation of 5a. The solid product was obtained in 85% crude yield and 89% purity by ¹H NMR, with a *meso*/*dl* ratio of 3/2: *meso*-5b ¹H NMR (CDCl₃) δ 0.06 (s, 18, Me₃Si), 0.92 (t, 6, CH₃), 1.4 (m, 8, MeCH₂CH₂), 2.28 (s, 2, CHSiMe₃), 3.32 (m, 4, CH₂N), 5.4 (t, 2, NH); *d*,*I*-5b ¹H NMR (CDCl₃) δ 0.10 (s, 18, Me₃Si), 0.92 (t, 6, CH₃), 1.4 (m, 8, MeCH₂CH₂), 1.4 (m, 8, MeCH₂CH₂), 2.06 (s, 2, CHSiMe₃), 3.32 (m, 4, CH₂N), 7.4 (t, 2, NH); IR (CDCl₃) 3447, 1651, 1508 cm⁻¹.

N,N-Bis(trifluoroethyl)-2,3-bis(trimethylsilyl)succinamide (meso- and d,l-5c). To a stirred solution of bisketene 1 (131 mg, 0.58 mmol) in 3 mL of CH₂Cl₂ was added CF₃CH₂-NH₂ (0.280 mL, 3.52 mmol) at room temperature, and the solution was stirred for 3 h. The $^1\!H$ NMR showed 10% residual 1; therefore, 0.050 mL of additional CF₃CH₂NH₂ was added, the solution was stirred for 1.5 h, and the solvent was evaporated to give a pale yellow solid that was not completely soluble in CDCl₃ and by ¹H NMR contained meso- and d,1-5c in a 1.2/1.0 ratio. The solid product was fractionated by partial dissolution in 4/1 pentane/CH₂Cl₂ to give a soluble fraction from which a solid rich in meso-5c crystallized on cooling and an insoluble fraction rich in d,l-5c was obtained: meso-5c 1H NMR (CDCl₃) 0.079 (s, 18, Me₃Si), 2.45 (s, 2, CHSiMe₃), 3.9-4.05 (m, 4, CH₂CF₃), 5.78 (bs, 2, NH); ^{13}C NMR (CDCl₃) δ $-1.59, 37.5, 40.6 (^{2}J_{CF} = 34.4 \text{ Hz}), 124.1 (^{1}J_{CF} = 279 \text{ Hz}), 174.1;$ *d*,*l*-**5c** ¹H NMR (CDCl₃) δ 0.11 (s, 18, Me₃Si), 2.11 (s, 2, CHSiMe₃), 3.75–3.95 (m, 4, CH₂CF₃), 7.75 (bs, 2, NH); ¹³C NMR (CDCl₃) δ –1.75, 38.5, 40.7 (q, ²*J*_{CF} = 34.4 Hz), 124.2 (q, ¹*J*_{CF} = 279 Hz), 175.0; **5c** IR (CDCl₃) 3452, 1670, 1508 cm⁻¹; EIMS *m*/*z* 424 (46, M⁺), 73 (100, Me₃Si⁺); HRMS *m*/*z* calcd for C₁₄H₂₆F₆N₂O₂Si₂ 424.1437, found 424.1453.

Reaction of **1** (7.7 mg, 0.034 mmol) in 0.7 mL of CD_2Cl_2 with $CF_3CH_2NH_2$ (2.7 μ L, 0.034 mmol) in an NMR tube gave after 3 h a product tentatively assigned by the ¹H NMR spectrum to contain 35% **3c**: ¹H NMR (CDCl₃) 0.17 (s, 9, Me₃Si), 2.10 (s, 1, CHSiMe₃), 3.8–4.1 (m, 2, CH₂CF₃), 6.12 (s, 1, NH).

N-Benzyl-N-n-butyl 2,3-bis(trimethylsilyl)butanediamide (6). To a solution of 3a (0.71 mmol, generated in situ from 0.71 mmol of 1 and 0.71 mmol of PhCH₂NH₂) in 8 mL of CH_2Cl_2 at room temperature was added *n*-BuNH₂ (70 μ L, 0.71 mmol) in one portion. After 3 min of stirring, the solvent was evaporated, giving 6 as a 2/1 mixture of erythro/threo diastereomers in 95% crude yield and 94% purity by ¹H NMR. Chromatography (2% MeOH in CH2Cl2) gave the purified isomers. erythro-6 (78 mg, 0.19 mmol, 27%), mp 141-144 °C: ¹H NMR (CDCl₃) δ 0.051 (s, 9, Me₃Si), 0.055 (s, 9, Me₃Si), 0.90 (t, 3, CH₃), 1.3 (m, 2, CH₂Me), 1.4 (m, 2, CH₂Et), 2.32 (d, 1, J = 11.2 Hz, CHCO), 2.36 (d, 1, J = 11.2 Hz, CHCO), 3.16 (m, 2, NCH₂Pr-n), 4.33 (dd, 2, CH₂Ph), 5.55 (t, 1, NH), 5.90 (t, 1, NH), 7.31 (m, 5, Ph); ¹³C NMR (CDCl₃) δ -1.34, -1.30, 13.8, 20.2, 31.7, 37.2, 37.3, 39.3, 44.0, 127.4 128.3, 128.6, 138.1, 173.6, 173.7; IR (CDCl)₃ 3445, 3330, 1664, 1628 cm⁻¹; EIMS m/z 406, (M⁺, 22), 391 (M⁺ - CH₃, 22), 315 (M⁺ - C₇H₇, 40), 200 (29), 147 (24), 91 (C₇H₇⁺, 100), 73 (Me₃Si⁺, 77); HRMS m/z calcd for C₂₁H₃₈N₂O₂Si₂ 406.2472, found 406.2484. threo-6 (26 mg, 0.064 mmol, 9%) mp 126-128 °C: ¹H NMR (CDCl₃) δ 0.079 (s, 9, Me₃Si), 0.83 (s, 9, Me₃Si), 0.92 (t, 3, CH₃), 1.37 (m, 2, CH₂Me), 1.50 (m, 2, CH₂Et), 1.98 (d, 1, J = 5.2 Hz, CHCO), 2.02 (d, 1, J = 5.2 Hz, CHO), 3.2 (m, 2, CH₂Pr-*n*), 4.4 (m, 2, CH₂Ph), 7.3 (m, 5, Ph); 7.36 (s, 1, NH); 7.87 (s, 1, NH). ¹³C NMR (CDCl₃) δ -1.37, -1.30, 13.8, 20.3, 31.7, 38.4, 38.5, 39.6, 43.9, 127.2, 128.1, 128.5, 138.5, 174.3, 174.4; IR (CDCl_3) δ 3445, 3257, 1656, 1621 cm⁻¹; EIMS m/z 406 (M⁺, 31), 315 (M⁺ C₇H₇, 70), 91 (C₇H₇⁺, 100); 73 (Me₃Si⁺, 87); HRMS *m*/*z* calcd for $C_{21}H_{38}N_2O_2Si_2$ 406.2472, found 406.2470.

N-Phenylimino-3,4-bis(trimethylsilyl)succinimide (7). To a stirred solution of **1** (173 mg, 0.763 mmol) in 3 mL of CH_2Cl_2 at room temperature was added phenylhydrazine (75 μ L, 0.76 mmol) in CH_2Cl_2 . After 10 min of stirring, the solvent was evaporated and ¹H NMR analysis showed that one stereoisomer of **7** was formed to the extent of 90%. Upon chromatography (10% EtOAc in hexanes, silica gel) the major stereoisomer was isolated in 95% purity, as a yellow solid, mp 144–158 °C (decomp): ¹H NMR (CDCl₃) δ 0.16 (s, 18, Me₃Si), 2.34 (s, 2, CHCO), 6.08 (s, 1, NH), 6.8–7.2 (m, 5, Ph); ¹³C NMR (CDCl₃) δ –3.1, 33.4, 115.6, 122.7, 129.1, 132.1, 176.9; IR (CCl₄) 3344 (w), 1703 cm⁻¹; EIMS m/z 3344 (M⁺, 42), 242 (M⁺ – NHPh, 52), 150 (32), 91 (19), 73 (Me₃Si⁺, 100); HRMS m/z calcd for $C_{16}H_{26}N_2O_2Si_2$ 334.1533, found 334.1525.

erythro-N-n-Butyl 2,3-bis(trimethylsilyl)-4-methoxy-4oxobutanamide (8a). Methanol (2 mL) was added to solid 3b (25 mg, 0.084 mmol) at room temperature, and after 5 min the resulting solution was evaporated to give a pale yellow solid which by ¹H NMR consisted of *erythro*-8a with less than 10% of any impurities or isomeric byproducts. This was recrystallized from pentane to give *erythro*-8a, mp 102–105 °C: ¹H NMR (CDCl₃) δ 0.045 (s, 9, Me₃Si), 0.064 (s, 9, Me₃Si), 0.91 (t, 3, J = 7.3 Hz, CH₃), 1.33 (sextet, 2, J = 7.4 Hz, CH₂), 1.47 (quintet, 2, J = 7.1 Hz, CH₂), 2.45 (d, 2, J = 11.5 Hz, CH), 2.66 (d, 2, J = 11.5 Hz, CH), 3.18 (q, 2, J = 7.1 Hz, CH₂N), 3.59 (s, 3, OCH₃), 5.28 (bs, 1, NH); ¹³C NMR (CDCl₃) $\delta - 1.80$, -1.46, 13.7, 20.2, 31.7, 35.4, 37.3, 39.3, 50.9, 173.1, 175.6; IR (CDCl₃) 3450, 1707, 1656, 1505 cm⁻¹; EIMS *m*/*z* 331 (M⁺, 13), 258 (M⁺ - SiMe₃, 41), 73 (Me₃Si⁺, 75); HRMS *m*/*z* calcd for C₁₅H₃₃NO₃Si₂ 331.1999, found 331.2005.

N-Benzyl-2,3-bis(trimethylsilyl)-4-methoxy-4-oxobutanamide (8b). Bisketene **1** (259 mg, 1.14 mmol) was slowly added via syringe to 13 mL of CH₃OH at 0 °C, and after 7 min of stirring, the CH₃OH was evaporated at 25 °C to give ketenyl ester **10a**, which was dissolved in 3 mL of CH₂Cl₂. To the stirred solution of 10a was added PhCH₂NH₂ (1.12 mg, 1.05 mmol) in 4 mL of CH₂Cl₂ at 25 °C, and after 15 min of stirring, the solvent was evaporated to give crude 8b (375 mg, 1.025 mmol, 98%), which by ¹H NMR analysis contained erythro- and threo-8b in a 2/1 ratio. Chromatography on silica gel (10% EtOAc/hexane) resulted in significant desilylation of 8b to form 11a, and in several experiments the highest purified yields of the isomers of 8b were obtained using 33% EtOAc in hexane containing 2% Et₃N. erythro-8b (mp 59 °C, 11%):¹H NMR $(CDCl_3) \delta 0.043$ (s, 9, Me₃Si), 0.063 (s, 9, Me₃Si), 2.29 (d, 1, J = 11.3 Hz, CHSiMe₃), 2.69 (d, 1, J = 11.7 Hz, CHSiMe₃), 3.59 (s, 3, OCH₃), 4.36 and 4.37 (each d, 1, J = 3.3 Hz, PhCH₂), 5.52 (bs, 1, NH), 7.3 (m, 5, Ph); ¹³C NMR (CDCl₃) δ -1.75, -1.44, 35.3, 37.2, 44.1, 51.0, 127.6, 128.4, 128.7, 138.1, 173.0,175.6; IR (CDCl₃) 3445, 1708, 1657, 1497 cm⁻¹; EIMS m/z 365 $(M^+, 8)$, 350 $(M^+ - CH_3, 38)$, 292 $(M^+ - TMS, 14)$, 91 $(C_7H_7^+, C_7H_7^+)$ 100), 73 (Me₃Si⁺, 54); HRMS m/z calcd for C₁₃H₃₁NO₃Si₂ 365.1843, found 365.1854. threo-8b (oil, 12%): 1H 0.068 (s, 9, Me₃Si), 0.083 (s, 9, Me₃Si), 2.13 (d, 1, J = 5.2 Hz, CHSiMe₃), 2.36 (d, 1, J = 5.5 Hz, CHSiMe₃), 3.64 (s, 3, OCH₃), 4.22 (dd, 1, J = 14.7, 4.7 Hz, PhCH), 4.59 (dd, 1, J = 14.3, 6.3 Hz, PhCH), 7.32 (m, 5, Ph), 8.51 (bs, 1, NH); $^{13}\mathrm{C}$ NMR (CDCl_3) δ -1.55, -1.47, 35.5, 38.2, 43.9, 51.7, 127.1, 128.2, 128.4, 138.8,173.3, 178.2; IR (CDCl₃) 2957, 1699, 1633 cm⁻¹; EIMS m/z 365 (M⁺, 6), 91 (C₇H₇⁺, 100), 73 (Me₃Si⁺, 60); HRMS *m*/*z* calcd for C₁₈H₃₁NO₃Si₂ 365.1843, found 365.1845.

N-Benzyl-2-trimethylsilyl-4-methoxy-4-oxobutanamide 11a (white solid, mp 68−69 °C, 69 mg, 21%): ¹H NMR (CDCl₃) δ 0.068 (s, 9, Me₃Si), 2.18 (dd, 1, J = 11.5, 3.0 Hz, *CH*CO₂CH₃), 2.34 (dd, 1, J = 17.3, 3.0 Hz, *CH*CO₂CH₃), 2.99 (dd, 1, J = 17.3, 11.6 Hz, *CH*CONH), 3.64 (s, 3, OCH₃), 4.43 (d, 2, J = 5.7 Hz, PhCH₂), 5.70 (bs, 1, NH), 7.3 (m, 5, Ph); ¹³C NMR (CDCl₃) −2.82, 31.2 (t, $J_{CH} = 132.6$ Hz), 34.5 (d, $J_{CH} =$ 125.2 Hz), 43.6, 51.7, 127.2, 127.8, 128.5, 138.6, 173.5, 174.0; IR (CDCl₃) 2931, 1731, 1660, 1503 cm⁻¹; EIMS *m*/*z* 293 (M⁺, 26), 91 (C₇H₇⁺, 100), 73 (Me₃Si⁺, 58); HRMS *m*/*z* calcd for C₁₅H₂₃NO₃Si 293.1447, found 293.1453.

N-Benzyl-2,3-bis(trimethylsilyl)-4-benzyloxy-4-oxobutanamide (8c). Benzyl alcohol (60.6 mg, 0.561 mmol) and 1 mL of Et₃N in 2 mL of pentane were added to bisketene 1 (138 mg, 0.611 mmol) in 3 mL of pentane, and the solution was stirred for 20 min at 25 °C. The solvent was evaporated, and the spectral properties of the intermediate ketenyl ester benzyl 2,3-(bistrimethylsilyl)-4-oxobut-3-enoate (10b) were recorded: ¹H NMR (CDCl₃) δ 0.093 (s, 9, Me₃Si), 0.131 (s, 9, Me₃Si), 2.01 (s, 1, CHSiMe₃), 5.14 (s, 2, PhCH₂), 7.35 (m, 5, Ph); ¹³C NMR CDCl₃) δ -2.35, -1.03, 30.0, 46.0, 66.7, 128.1, 128.4, 128.5, 135.9, 174.8, 180.8; IR (CDCl₃) 2959, 2085, 1716 cm⁻¹. Then 2 mL of CH₂Cl₂ and PhCH₂NH₂ (66 mg, 0.617 mmol) in 2 mL of CH₂Cl₂ were added, and the solution was stirred for 15 min and concentrated at reduced pressure. Analysis by ¹H NMR revealed the presence of erythro- and threo-8c in a 5/1 ratio, together with traces of 11b. Chromatography (3% Et₃N, 33% CH₂Cl₂/hexane) gave pure erythro-8c and 11b, but only some of the spectral properties of threo-8c were obtained from a mixture containing the *erythro* isomer. erythro-8c:¹H NMR (CDCl₃) δ 0.033 (s, 9, Me₃Si), 0.056 (s, 9, Me₃Si), 2.30 and 2.73 (each d, 1, J = 11.5 Hz, CHSiMe₃), 4.36 and 4.37 (each d, 1, J = 3.4 Hz, CH₂N), 4.94 and 5.10 (each d, 1, J = 12.3 Hz, CH₂O), 5.50 (bs, 1, NH), 7.4 (m, 10, Ph); ¹³C NMR (CDCl₃) δ -1.66, -1.35, 35.5, 37.3, 44.1, 66.2, 127.6, 128.2, 128.4, 128.5, 128.7, 135.7, 138.1, 173.0, 174.9; IR (CDCl₃) 1705, 1656, 1498 cm⁻¹; EIMS *m*/*z* 441 (M⁺, 9), 350 $(M^+ - C_7H_7, 47)$, 91 ($C_7H_7^+$, 100), 73 (Me_3Si^+ , 42); HRMS m/zcalcd for C24H35NO3Si2 441.2156, found 441.2152. threo-8c: 1H

NMR (CDCl₃) δ 0.043 (s, 9, Me₃Si), 0.064 (s, 9, Me₃Si), 2.12 and 2.39 (each d, 1, J = 5.2 Hz, CHSiMe₃).

N-Benzyl-2-trimethylsilyl-4-benzyloxy-4-oxobutanamide (11b): ¹H NMR (CDCl₃) δ 0.072 (s, 9, Me₃Si), 2.18 (dd, 1, J = 11.7, 3.0 Hz, CHCO₂), 2.40 (dd, 1, J = 17.6, 3.0 Hz, CHCO), 3.07 (dd, 1, J = 17.6, 11.7 Hz, CHCON), 4.42 (dq, 2, J = 15.4, 5.5 Hz, CH₂N), 5.07 and 5.13 (each d, 1, J = 12.4 Hz, PhCH₂O), 5.57 (bs, 1, NH), 7.3 (m, 10, Ph); ¹³C NMR (CDCl₃) $\delta - 2.72$, 31.9, 35.7, 43.8, 66.6, 127.4, 128.0, 128.21, 128.24, 128.5, 128.6, 135.8, 138.6, 173.3, 178.4; IR (CDCl₃) 3446, 1730, 1655 cm⁻¹; EIMS *m*/*z* 369 (M⁺, 12), 91 (C₇H₇⁺, 100) 73 (Me₃Si⁺, 34); HRMS *m*/*z* calcd for C₂₁H₂₇NO₃Si 369.1760, found 369.1767.

N,*N*-Bis[1',4'-dioxo-2',3'-bis(trimethylsilyl)-1'-but-3'enyl]-1,4-bis(aminomethyl)benzene (13). To a stirred solution of 1,4-bis(aminomethyl)benzene (12) (61 mg, 0.45 mmol) in 3 mL of CH₂Cl₂ at 25 °C was added in one portion bisketene 1 (187 mg, 0.825 mmol) in 3 mL of CH₂Cl₂. After 10 min, the solvent was evaporated, giving a white solid identified by ¹H NMR as 13 containing 8% succinamides with ¹H NMR signals at δ 2.03 and 2.33. 13: ¹H NMR (CDCl₃) δ 0.122 (s, 18, Me₃Si), 0.138 (s, 18, Me₃Si), 1.91 (s, 2, CHSi), 4.39 (d, 4, PhCH₂, *J* = 5.6 Hz), 6.15 (s, 2, NH, *J* = 5.7 Hz), 7.22 (s, 4, Ar); ¹³C NMR (CDCl₃) δ -2.0, -1.0, 10.7, 32.1, 43.5, 128.2, 137.8, 173.2, 179.6; IR (CDCl₃) 3444, 2085, 1649, 1503 cm⁻¹; EIMS *m*/*z* 588 (M⁺, 24), 73 (Me₃Si⁺, 100); HRMS *m*/*z* calcd for C₂₈H₄₈N₂O₄-Si₄ 588.2691, found 588.2710.

Reaction of Bisketene 1 with 1.2 Equiv of 1,4-Bis-(**aminomethyl)benzene.** To a stirred solution of **12** (128 mg, 0.940 mmol) in 4 mL of CH_2Cl_2 at -78 °C was added in one portion bisketene **1** (184 mg, 0.814 mmol) in 2 mL of CH_2Cl_2 . After 10 min, the solution was allowed to warm to 25 °C over 20 min and was evaporated, giving a white solid which by ¹H NMR was consistent with the formation of **14** without the presence of other products. **14**: ¹H NMR (CD₃OD) δ -0.01 (s, Me₃Si), 0.04 (s, Me₃Si), 2.15 (s, rel area 1, CHSi), 2.45 (s, rel area 4, CHSi), 3.8 (s, rel area 9, Ar).

Reaction of 1,6-Diaminohexane with Bisketene 1. A solution of bisketene **1** (0.5 mmol) in CH_2Cl_2 at -78 °C was added to 1,6-diaminohexane (55.8 mg, 0.480 mmol) in 3 mL of CH_2Cl_2 cooled to -78 °C, and a pink color developed which persisted. The solution was stirred 30 min at -78 °C and warmed to room temperature as the pink color disappeared and a solid formed. The ¹H NMR spectrum of the soluble portion of the solid was consistent with structure **15**: ¹H NMR (CDCl₃) δ 0.07, 0.11 (each s, 9, Me₃Si), 1.35 (b, $CH_2CH_2CH_2$ -NH), 1.5 (b, CH_2CH_2NH), 2.35 (b, CHTMS), 2.7 (b, NH₂), 3.15 (b, CH_2NH), 5.9 and 7.8 (b, NH); IR (CDCl₃) 1650, 1499 cm⁻¹.

Kinetics. Kinetic measurements were carried out by either conventional UV spectroscopy or by stopped flow techniques as reported previously.^{2j} The program SigmaPlot was used to fit the kinetics, using a statistical error weighted fitting, which was shown before^{2j} to give the best fit for ketene aminations.

Acknowledgment. Financial support by the Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged.

Supporting Information Available: Kinetic data and NMR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

JO9825052